Теория статистического вывода

Этот раздел С. включает систему методов получения выводов о больших группах (фактически, генеральных совокупностях) на основе наблюдений, проведенных в группах меньшего размера, называемых выборками.В психологии статистический вывод служит двум главным целям: 1) оценить параметры генеральной совокупности по выборочным статистикам; 2) оценить шансы получения определенного паттерна результатов исследования при заданных характеристиках выборочных данных.

Среднее является наиболее часто оцениваемым параметром генеральной совокупности. В силу самого способа вычисления стандартной ошибки, выборки большего объема обычно дают меньшие стандартные ошибки, что делает статистики, вычисленные по большим выборкам, несколько более точными оценками параметров генеральной совокупности. Пользуясь стандартной ошибкой среднего и нормированными (стандартизованными) распределениями вероятностей (такими как t-распределение), можно построить доверительные интервалы — области значений с известными шансами попадания в них истинного генерального среднего.

Оценивание результатов исследования.Теорию статистического вывода можно использовать для оценки вероятности того, что частные выборки принадлежат известной генеральной совокупности. Процесс статистического вывода начинается с формулирования нулевой гипотезы (H0), состоящей в предположении, что выборочные статистики получены из определенной совокупности. Нулевая гипотеза сохраняется или отвергается в зависимости от того, насколько вероятным яв-ся полученный результат. Если наблюдаемые различия велики относительно величины изменчивости выборочных данных, исследователь обычно отвергает нулевую гипотезу и делает вывод о крайне малых шансах того, что наблюдаемые различия обязаны своим происхождением случаю: результат является статистически значимым. Вычисляемые критериальные статистики с известными распределениями вероятностей выражают отношение между наблюдаемыми различиями и изменчивостью (вариабельностью).

Параметрические статистики.Параметрические С. могут использоваться в тех случаях, когда удовлетворяются два требования: 1) в отношении изучаемой переменной известно или, по крайней мере, можно предположить, что она имеет нормальное распределение; 2) данные представляют собой интервальные измерения или измерения отношений.

Если среднее и стандартное отклонение генеральной совокупности известно (хотя бы предположительно), можно определить точное значение вероятности получения наблюдаемого различия между известным генеральным параметром и выборочной статистикой. Нормированное отклонение (z-оценку) можно найти путем сравнения со стандартизованной нормальной кривой (называемой также z-распределением).

Поскольку исследователи часто работают с малыми выборками и поскольку параметры генеральной совокупности редко известны, стандартизованные t-распределения Стьюдента обычно используются чаще нормального распределения. Точная форма t-распределения варьирует в зависимости от объема выборки (точнее, от числа степеней свободы,т. е. числа значений, к-рые можно свободно изменять в данной выборке). Семейство t-распределений можно использовать для проверки нулевой гипотезы, состоящей в том, что две выборки были извлечены из одной и той же совокупности. Такая нулевая гипотеза типична для исследований с двумя группами испытуемых, напр. эксперим. и контрольной.

Когда в исслед. задействовано больше двух групп, можно применить дисперсионный анализ (F-критерий). F — это универсальный критерий, оценивающий различия между всеми возможными парами исследуемых групп одновременно. При этом сравниваются величины дисперсии внутри групп и между группами. Существует множество post hoc методик выявления парного источника значимости F-критерия.

Непараметрические статистики.Когда не удается соблюсти требования адекватного применения параметрических критериев или когда собираемые данные являются порядковыми (ранговыми) или номинальными (категориальными), используют непараметрические методы. Эти методы параллельны параметрическим в том, что касается их применения и назначения. Непараметрические альтернативы t-критерию включают U-критерий Манна—Уитни, критерий Уилкоксона (W) и критерий с2для номинальных данных. К непараметрическим альтернативам дисперсионного анализа относятся критерии Краскела — Уоллеса, Фридмана и с2. Логика применения каждого непараметрического критерия остается той же самой: соответствующая нулевая гипотеза отвергается в том случае, если расчетное значение критериальной статистики выходит за пределы заданной критической области (т. е. оказывается менее вероятным, чем предполагалось).

Так как все статистические выводы основаны на оценках вероятности, возможны два ошибочных исхода: ошибки I рода, при к-рых отвергается истинная нулевая гипотеза, и ошибки II рода, при к-рых сохраняется ложная нулевая гипотеза. Первые имеют следствием ошибочное подтверждение гипотезы исслед., а последние — неспособность распознать статистически значимый результат.

См. также Дисперсионный анализ, Меры центральной тенденции, Факторный анализ, Измерение, Методы многомерного анализа, Проверка нулевой гипотезы, Вероятность, Статистический вывод

А. Майерс

Статистика малых выборок (small-sample statistics)

Принято считать, что начало С. м. в. или, как ее часто называют, статистике «малых п»,было положено в первом десятилетии XX века публикацией работы У. Госсета, в к-рой он поместил t-распределение, постулированное получившим чуть позже мировую известность «студентом». В то время Госсет работал статистиком на пивоваренных заводах Гиннесса. Одна из его обязанностей заключалась в том, чтобы анализировать поступающие друг за другом партии бочонков только что сваренного портера. По причине, к-рую он никогда толком не объяснял, Госсет экспериментировал с идеей существенного сокращения числа проб, отбираемых из очень большого количества бочек, находящихся на складах пивоварни, для выборочного контроля качества портера. Это и привело его к постулированию t-распределения. Так как устав пивоваренных заводов Гиннесса запрещал публикацию их работниками результатов исслед., Госсет опубликовал результаты своего эксперимента по сравнению выборочного контроля качества с использованием t-распределения для малых выборок и традиционного z-распределения (нормального распределения) анонимно, под псевдонимом «Студент» (Student — откуда и пошло название t -распределение Стьюдента).

t-распределение.Теория t-распределения, подобно теории z-распределения, используется для проверки нулевой гипотезы о том, что две выборки представляют собой просто случайные выборки из одной генеральной совокупности и, следовательно, вычисленные статистики (напр., среднее и стандартное отклонение) яв-ся несмещенными оценками параметров генеральной совокупности. Однако, в отличие от теории нормального распределения, теория t-распределения для малых выборок не требует априорного знания или точных оценок математического ожидания и дисперсии генеральной совокупности. Более того, хотя проверка различия между средними двух больших выборок на статистическую значимость требует принципиального допущения о нормальном распределении характеристик генеральной совокупности, теория t-распределения не требует допущений относительно параметров.

Общеизвестно, что нормально распределенные характеристики описываются одной единственной кривой — кривой Гаусса, к-рая удовлетворяет следующему уравнению:

.

При t-распределении целое семейство кривых представлено следующей формулой:

.

Вот почему уравнение для t включает гамма-функцию, которая в математике означает, что при изменении п данному уравнению будет удовлетворять другая кривая.


7239478220532402.html
7239557713989210.html

7239478220532402.html
7239557713989210.html
    PR.RU™